top of page
Fraud Detection

Preventing fraudulent workers compensation claims

Powered by AI and ML, the solution has a library of algorithms built to prevent fraudulent workers compensation claims from the Claimant, Provider or the Vendor.


Consistently, fraudulent workers compensation claims pose a challenge to different TPAs, PEOs, and companies when dealing with Workers’ comp and General Liability. According to the National Insurance Crime Bureau (NICB), at least 10% of all Property and Casualty Claims are fraudulent, demonstrating how this one obstacle alone is costing billion-dollar losses yearly in the country.. 

Specifically, with Workers’ Compensation, insurance professionals may be met with claimant fraud, provider fraud, and vendor fraud that may act as a threat to not only insurance companies, but the average household as well. It’s also important to note that an increase in fraudulent workers compensation claims has increased insurance premiums and also have negatively impacted the prices of goods (NICB).

Fraudulent workers compensation claims

Not only can fraudulent workers compensation claims be difficult to detect, but claims adjusters and risk managers can spend lengthy amounts of time as well as money on investigations and evaluations. However, with’s solution, fraudulent workers compensation claims can easily be detected and avoided in order to prevent it from taking such a huge toll on companies. As one of’s top proven models, the Fraud Prediction Model utilizes artificial intelligence and machine learning algorithms to flag any potential fraud or abuse within Workers’ Compensation claims. By incorporating the solution into your claims management systems, insurance professionals can quickly single-out fraudulent workers compensation claims.

Deeper look

As a way to detect [ fraudulent workers compensation claims ] and prevent fraud early on in the claims’ life cycles, offers proprietary Fraud Prediction Models that can classify the claim as either ‘Suspicious’ or ‘Non-Suspicious.’ With artificial intelligence having the ability to give better insights and act as a faster and more reliable tool, it is able to calculate the probability of a claim being suspicious or not. Statistical modeling, texting mining, database searches all work interchangeably to create the artificial intelligence-infused predictive models. To handle the complexity and influx of data, augmented analytics is used within the models in order to process and organize the data.’s solution is able to provide valuable insights into your claims data, and with deep learning algorithms, the system is constantly learning from incoming new data which leads to the improvement in the accuracy of the results and better prediction of fraudulent workers compensation claims.

Fraud workers compensation claims Detection.webp

Each of the characteristics of the model––business rule-driven, anomaly detection techniques, statistical techniques, social network analytics, and natural language processing––all work alongside each other to create an effective visual platform that allows insurance professionals to handle and accurately predict fraudulent workers compensation claims EFFORTLESSLY. All these traits help to keep track of unusual patterns, notify of possible collusion, pinpoint any words that are a part of’s fraud library, and label any suspicious transactions. Being business rule-driven is a specific aspect that can help to anticipate and identify suspicious and fraudulent claim activity.


These automated business rules are integrated into the fraud management programs so that the model could accurately flag any abuse or fraud. Users of the dashboard with the solution will be able to clearly see the “Current Fraud Prediction Status,” and be given a “Model Confidence Percentage” along with the status. Within the Fraud Prediction Model, there are also four sub-models created that give claims managers an overview of how these claims would affect their companies in less than 30 days, less than 180 days, less than 360 days, and more than 360 days and Runtime. 

Klear AI helps in preventing fraudulent workers comp claims

Why ?’s Fraudulent workers compensation claims Prediction Model, powered by artificial intelligence and machine learning algorithms, can assist insurance professionals in managing claims more effectively. Being a cloud-based system that has a high level of accuracy, it can easily integrate with a multitude of third-party systems and self-owned enterprise applications. Within just the last few months, 1.5% of claims were being flagged as ‘Suspicious,’ demonstrating the necessity of the solution to easily detect suspicious and fraudulent workers compensation claims at an early time.

In the quick demonstration, potential clients would be able to learn specifically the predictive models that has created along with its ability to organize and interpret complex data. Specifically, in regards to fraud detection within Workers’ Compensation, the demonstration will showcase the interactive and easy-to-use platform that would predict whether a claim is ‘Suspicious’ or ‘Non-Suspicious.’ How the platform is able to produce a model confidence percentage will also be thoroughly touched-on and those who do schedule a meeting will be able to see first-hand how they are able to adjust the deck completely to their own liking and convenience. Detecting fraudulent workers compensation claims is often an extensive and difficult task, but with’s thoroughly trained and developed models, insurance providers and risk managers can quickly anticipate any abuse or fraud.

Request A Free Demo 

Your personal information will be kept confidential

Thanks for submitting!

bottom of page